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Abstract. We present an analytic investigation of the signal-to-noise ratio (SNR) by studying the bistable
sawtooth system driven by correlated Gaussian white noises. The analytic expression of SNR is obtained.
Based on it, we detect the phenomenon of stochastic multiresonance, which arises from the dependence
of SNR upon the noises correlation coefficient. Furthermore, there exists not only resonance, but also
suppression in the SNR ∼ D (the additive noise intensity) curve and the SNR ∼ Q (the multiplicative
noise intensity) curve.

PACS. 05.40-a Fluctuation phenomena, random processes, noise, and Brownian motion –
02.50.-r Probability theory, stochastic processes, and statistics

1 Introduction

The phenomenon of stochastic resonance (SR) has begun
to attract wide attention in a great quantity of scientific
fields since the original discovery of Benzi et al. [1] and
Nicolis et al. [2]. Consequently, the theories of SR have
developed and improved gradually [3,15]. Based on the
transition rate, McNamara et al. [5] detailedly studied
the SR phenomenon, which occurs in the bistable system,
by using the method of adiabatic approximation. Then,
Hu et al. [10] applied the theory of eigenfunction expan-
sion to get systematic results in terms of the perturbation
expansion, and more accurate results were accessible. Fur-
ther more, Gammaitoni et al. [13] proposed a method to
investigate SR by means of the residence-time distribu-
tion. In this phase, all these works as to stochastic res-
onance were fastened their attention on the case of uni-
modal shape, i.e., the SR phenomenon was shown by the
appearance of only one maximum in the output SNR.
Their interests were immersed in researching the stochas-
tic systems, in which SR occurs, but they ignored to place
emphasis on the form of SR itself, a more important as-
pect of SR. Therefore, none of literature, before 1997, had
studied and reported SR of this kind, in which the SNR
of the system appears more than one maximum with the
variety of the noise intensity, i.e., the phenomenon named
stochastic multiresonance.

a e-mail: dajinwu@public.wh.hb.cn

In 1997, the phenomenon of stochastic multiresonance
was detected firstly by Vilar and Rubi’s work [16]. They
investigated four different stochastic systems, and the
SNR ∼ ln D curves were plotted by means of numer-
ical simulation. As one can see from these curves, the
SNR ∼ ln D curves exhibit several maxima, even exhibit
maximum periodically.

The stochastic systems were considered with only one
noise item in Vilar’s work, and the analytic expression of
SNR was not accessible. Further, they analyzed the rela-
tion between SNR and the noise intensity by virtue of the
method of scaling argument, according to the symmetries
and invariances of the systems [16,20]. Nevertheless, as a
matter of fact, many of stochastic systems were driven by
several noise sources. Moreover, in certain situations, the
noises may be correlated with each other in many kinds
of forms, which was studied by Fulinski et al. [17–19] in
lots of references. In this paper, we present an analytic
investigation of the SNR by studying the bistable saw-
tooth system driven by correlated Gaussian white noises.
The analytic expression of SNR is obtained. Based on it,
we detect the phenomenon of stochastic multiresonance,
which arises from the dependence of SNR upon the noises
correlation coefficient. Furthermore, there exists not only
resonance, but also suppression in the SNR ∼ D (the
additive noise intensity) curve and the SNR ∼ Q (the
multiplicative noise intensity) curve.

This paper is organized as follows. In Section 2, we
present the model and the detailed theoretic derivation of
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analytic expression of SNR. Section 3 is some conclusions
and discussion.

2 Model and theoretic derivation

Consider a one dimensional system driven by correlated
multiplicative and additive noise, in which the bistable
potential is modulated by a weak periodic signal and both
noises are correlated to Gaussian white noises. The model
is described by a Stratonovich Langevin equation,

ẋ = −U
′
(x) + A(t) + g(x)ξ(t) + η(t) , (1)

where U(x) is a bistable sawtooth potential, whose ex-
pression is assumed as

U(x) =




∞ , when −∞ < x < −L

bx/L ,when −L 6 x < 0
−bx/L ,when 0 6 x 6 L

∞ ,when L < x < ∞
(2)

in which b and L is the height and width of the potential
barrier, respectively.

In equation (1), A(t) = A0 cosΩt, is the periodic mod-
ulated signal, in which A0 is the amplitude of the signal
and Ω the frequency.

The multiplicative function g(x) is chosen to be piece-
wise constant,

g(x) =
{

c , when −L 6 x < 0
−c , when 0 6 x 6 L

(3)

here, c is a constant.
The noises ξ(t) and η(t) in equation (1) are correlated

in the following manner

〈ξ(t)〉 = 〈η(t)〉 = 0,〈
ξ(t)ξ(t

′
)
〉

= 2Qδ (4)〈
η(t)η(t

′
)
〉

= 2Dδ(t − t
′
), (5)〈

ξ(t)η(t
′
)
〉

=
〈
η(t)ξ(t

′
)
〉

= 2λ
√

QDδ(t − t
′
), |λ| 6 1

(6)

here λ, the noises correlation coefficient, denotes the cor-
relative strength between ξ(t) and η(t). Q and D are the
intensities of the noises.

Above is our concrete model. For the sake of clarity of
our thinking, we show the procedure of the investigation
by two steps. First step, we assume that W±(t) can be
made a Taylor expansion as following form [5]

W±(t) =
1
2
[W0 ∓ α1A0 cosΩt + O(A2

0) + · · · ]. (7)

Here W+(t) and W−(t) are the nonstationary transi-
tion rates from the state x+ to x− and from the state x−
to x+ respectively, where x+ and x− are the stationary

solution to equation (1) without noises and signal. W0 is
the transition rate without modulated signal, and α1 is the
value of first derivative at the point of Taylor expansion.

According to the potential model described by equa-
tion (2), x± = ±L are both stationary solutions to equa-
tion (1) without signal and noises. Therefore, W±(t) are
the nonstationary transition rates from L to −L and from
−L to L respectively.

The Fokker-Planck equation corresponding to equa-
tion (1) with equations (4–6) is given by [21]

∂tp(x, t) = −∂x

[
−U

′
(x) + A0 cosΩt + G(x)G

′
(x)

]
p(x, t)

+ ∂xxG2(x)p(x, t) , (8)

where, G(x) =
√

D
[
Rg2(x) + 2λ

√
Rg(x) + 1

]1/2

, R =
Q/D.

The mean first passage time (MFPT) corresponding
to equation (8), T (R, λ, A(t)) , is determined by [22,23]

T (R, λ, A) = D−1

∫ L

−L

dxH(x) exp
[
Φ(x)
D

]

×
∫ x

−∞
dyH(y) exp

[
−Φ(x)

D

]
, (9)

in which,

H(x) =
[
Rg2(x) + 2λ

√
Rg(x) + 1

]−1/2

, (10)

Φ(x) =
∫ x

−∞
dyH2(y)

[
−U

′
(x) + A0 cosΩt

]
. (11)

Combining equations (9–11) with equations (2–3), the
MFPT is obtained

T (R, λ, A) =
D

H2
+K2

+

[
exp

(
LK+H2

+

D

)
− 1

]

+
D

H2−K2−

[
exp

(
LK−H2

−
D

)
− 1

]

+
−DH−

H+K+(H2−K− − H2
+K+)

×
[
exp

L

D

(
K−H2

− − K+H2
+

) − 1
]

+
D

H+H−K+K−
exp

(
LK+H2

+

D

)

×
[
exp

(
LK−H2−

D

)
− 1

]
− 1

K+
− 1

K−
·
(12)

Here,

H± =
[
c2R ± 2λc

√
R + 1

]−1/2

,

and

K± = ±b/L + A0 cosΩt .
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The analytic expression of the MFPT T (R, λ, A(t)) is
given by equation (12). When D � ∆U(x) (the barrier
height), the transition rate is the reciprocal of the MFPT,
T (R, λ, A(t)), by virtue of the result in reference [22–24],
i.e., W (t) = 1/T (R, λ, A(t)). Moreover, according to the
expression of transition rate in equation (7), W0 and α1

is determined respectively as

1
2
W0 = W (t)|A=0 = [T (R, λ, A)|A=0]

−1 ≡ T−1
0 , (13)

1
2
α1 = T−2

0

(
∂T

∂A

)∣∣∣∣
A=0

. (14)

When A(t) = 0, the case without signal, we obtain

T0 ≡ T (R, λ, A)|A=0 =
L2D

H2
+b2

[
exp

(
bH2

+

D

)
− 1

]

+
L2D

H2−b2

[
exp

(−bH2
−

D

)
− 1

]

+
DH−L2

H+(H2
+ + H2−)b2

[
exp

−b

D

(
H2

+ + H2
−

) − 1
]

+
−DL2

H+H−b2
exp

(
bH2

+

D

) [
exp

(−bH2
−

D

)
− 1

]
.

(15)

According to equation (13), it is easy to know W0 = 2/T0.
Then, combining equation (12) with equation (14), it
yields

1
2
α1 =

1
T 2

0

(
∂T

∂A

) ∣∣∣∣
A=0

=
1

T 2
0

{
L3

b2
exp (σ+) +

L3

b2
exp (−σ−)

+
−2DL3

H2
+b3

[exp (σ+) − 1] +
2DL3

H2−b3
[exp (−σ−) − 1]

+
DH−L3

H+(H2
+ − H2−)b3

[exp (σ+ − σ−) − 1]

+
H−L3(H2

− − H2
+)

H+(H2
+ + H2−)b2

exp (σ+ − σ−)

+
−H−L3

H+b2
exp (σ+) exp (−σ−)

+
−H+L3

H−b2
exp (σ+) [exp (−σ−) − 1]

+
DH−L3(H2

− − H2
+)

H+(H2
+ + H2−)2b3

[exp (σ+ − σ−) − 1]+
2L3

b2

}
·

(16)

where, σ+ = bH2
+

D , and σ− = bH2
−

D . Now, both W0 and α1

are known. The second step, in the adiabatic approxima-

tion the output power spectral density is given by [5]

S(ω) = SS(ω) + SN (ω)

=
πL2α2

1A
2
0

2(W 2
0 + Ω2)

δ(ω − Ω) +
[
1 − α2

1A
2
0

2(W 2
0 + Ω2)

]
2L2W0

W 2
0 + ω2

,

(17)

in which, the signal output spectral density, SS(ω), is a δ
function at the signal frequency, and the noise output
spectrum, SN (ω), is a Lorentzian form.

So, the signal-to-noise ratio is given by [5,24]

SNR =
PS

SN (ω = Ω)
=

PS[
1 − α2

1A2
0

2(W 2
0 +Ω2)

]
2L2W0
W 2

0 +Ω2

· (18)

where,

PS =
∫ ∞

0

SS(ω)dω =
πL2α2

1A
2
0

2(W 2
0 + Ω2)

·

Here, PS is the output power of signal, and SNR the
output signal-to-noise ratio. In this paper, we study SNR
by using the theory of adiabatic approximation proposed
by McNamara et al. in reference [5]. The theory is valid
under the conditions: Ω � 1, A0 � 1 and D � 1, and for
the presence of the multiplicative noise in our model, the
limit Q � 1 is added. Due to these limits, the process of
the system reaching local equilibrium in each well is very
transient, comparing with the process of the system reach-
ing equilibrium between both wells and the period of the
modulating signal. Moreover, it is also the reason that we
can only expand to the first order of A(t) in equation (7).
In order to keep our results valid, throughout this paper
we will restrict all chosen parameters in the case of the
adiabatic approximation.

3 Conclusion and discussion

By virtue of the expression for SNR equation (18), we
will analyze emphatically the influence to SNR by addi-
tive noise intensity D, multiplicative noise intensity Q and
correlation coefficient λ between both noises. In order to
illustrate the results we plot in Figures 1–3 the dependence
of SNR upon the parameters.

(I) Appearance of stochastic multiresonance

In Figure 1, we depict the SNR ∼ λ curve for four
cases. Chosen the additive noise intensity D as the pa-
rameter, when D is very small, for D = 0.001, there ex-
ists a minimum in the SNR ∼ λ curve (i.e. suppression),
as shown in Figure 1. When D is added, for D = 0.08,
there are two peaks in the SNR ∼ λ curve at which
SR occur twice, and the heights of both peaks are dif-
ferent. Hence, this phenomenon was called as stochastic
multiresonance, which was rarely found in ordinary sys-
tem. For D = 0.20, there are two peaks, between which the



126 The European Physical Journal B

Fig. 1. The output SNR as a function of the correlation coefficient λ, for different values of the additive noise intensity D.
The values of the other parameters are L = 0.1, b = 1, c = 30, Q = 0.001, A0 = 0.1, Ω = 0.001.

difference of their heights becomes larger, and two mini-
mum in the SNR ∼ λ curve. Proceed to increase D, for
D = 0.30, three peaks appear in the SNR ∼ λ curve, and
the height of the peak in the right is the largest, while that
of mid the smallest. It is demonstrated that the appear-
ance of stochastic multiresonance not only depends the ad-
ditive noise intensity, but also closely correlative with the
noise correlation coefficient (i.e. the correlation strength
between stochastic force and potential fluctuation).

(II) Suppression and resonance to SNR by the additive
noise intensity

There exist four cases in the SNR ∼ D curve, which
is shown in Figure 2. Chosen the multiplicative coeffi-
cient c as the parameter, when c = 7.0, SNR increases
monotonously as D, as shown in Figure 2(1). When c
is increased, for c = 18.0, the curve exhibits a maxi-
mum, i.e., the typical SR continues to increase c, when
c = 20.4, a minimum firstly, then a maximum appears in
the SNR ∼ D curve, that is to say, it exhibits suppression
firstly, SR later. This case is rare in the former works. For
c = 25.0, SNR is decreasing monotonously with increas-
ing D.

(III) Resonance and suppression to SNR by the multi-
plicative noise intensity

As shown in Figure 3, there exist four cases in the
SNR ∼ Q curve, too. Similarly chosen c as the parame-
ter, for c = 1.7, SNR increases monotonously as Q. For
c = 4.6, the typical SR appears, shown in Figure 3(2). For
c = 10.8, the shape of the SNR ∼ Q curve shows reverse
case compared with the SNR ∼ D curve, because it ex-
hibits SR first, suppression later in the SNR ∼ Q curve,
shown in Figure 2(3) and Figure 3(3). For c = 30.0, SNR
is increasing monotonously with increasing Q. It is obvi-
ous that the multiplicative coefficient is the key factor to
influence SNR.

In summary, the output SNR exhibits SR, not only
at only one special value of the noise intensity, but also
at several different values. Moreover, there is not only SR,
but also suppression in a stochastic system. We believe
that stochastic multiresonance is a new form of SR, and
it may lead us to explore the essence of SR further. The
heights of peaks, which occur in this paper, are different.
In order to conform to the practical application, we expect
to obtain the peaks of the same height by perfecting our
model.
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Fig. 2. The output SNR as a function of the additive noise intensity D, for the different values of the multiplicative coefficient c.
The values of the other parameters are L = 0.1, b = 2, λ = 0.5, Q = 0.001, A0 = 0.1, Ω = 0.001.

Fig. 3. The output SNR as a function of the multiplicative noise intensity Q, for different values of the multiplicative coeffi-
cient c. The values of the other parameters are L = 0.1, b = 5, D = 0.2, λ = 0, A0 = 0.1, Ω = 0.001.
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